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Suggestions for Using the Text 
 

In writing this text, we have followed the premise that a good textbook must be more than just a repository of 

knowledge. A good textbook should be an agent that interacts with the student to create a working knowledge of the 

subject. To help achieve this interaction, we have modified the traditional format in order to encourage active 

student participation. 

 

Each chapter begins with Preview Questions, which indicate the topics addressed in each section of the chapter. 

Next is a Focus Problem that uses real-world data. The Focus Problems show the students the kinds of questions 

they can answer once they have mastered the material in the chapter. Consequently, students are asked to solve each 

chapter’s Focus Problem as soon as the concepts required for the solution have been introduced. 

 

Procedure displays, which summarize key strategies for carrying out statistical procedures and methods, and 

definition boxes are interspersed throughout each chapter. Another special feature of this text is the Guided 

Exercises built into the reading material. These Guided Exercises, which include complete worked solutions, help 

the students to focus on key concepts in the newly introduced material. Also, the Section Problems reinforce student 

understanding and sometimes require the student to look at the concepts from a slightly different perspective than 

the one presented in the section. Some Section Problems are categorized as Statistical Literacy, Critical Thinking, 

Basic Computation, or Expand Your Knowledge. The Statistical Literacy problems typically review definitions and 

statistical symbols used in the text. Critical Thinking problems often ask about statistical formulas and unusual 

situations that involve common ideas. Basic Computation problems are just that – problems designed to reinforce 

the raw mechanics of statistical formulas or procedures.  Expand Your Knowledge problems appear at the end of 

each section and present enrichment topics designed to challenge the student with the most advanced concepts in 

that section.  

 

The Chapter Review Problems are much more comprehensive. They require students to place each problem in the 

context of all they have learned in the chapter. Data Highlights, found at the end of each chapter, ask students to 

look at data as presented in newspapers, magazines, and other media and then to apply relevant methods of 

interpretation. Finally, Linking Concept problems ask students to verbalize their skills and synthesize the material. 

 

We believe that the progression from small-step Guided Exercises to Section Problems, Chapter Review Problems, 

Data Highlights, and Linking Concepts will enable instructors to use their class time in a very profitable way, going 

from specific mastery details to more comprehensive decision-making analysis. 

 

Calculators and statistical computer software remove much of the computational burden from statistics. Many basic 

scientific calculators provide the mean and standard deviation. Calculators that support two-variable statistics 

provide the coefficients of the least-squares line, the value of the correlation coefficient, and the predicted value of y 

for a given x. Graphing calculators sort the data, and many provide the least-squares line. Statistical software 

packages give full support for descriptive statistics and inferential statistics. Students benefit from using these 

technologies. In many examples and exercises in Understandable Statistics we ask students to use calculators to 

verify answers. For example, in keeping with the use of computer technology and standard practice in research, 

hypothesis testing is now introduced using P values. The critical region method is still supported but is not given 

primary emphasis. Illustrations in the text show TI-83Plus/TI-84Plus, MINITAB, SPSS, and Microsoft Excel 

outputs, so students can see the different types of information available to them through the use of technology. 

 

However, it is not enough to enter data and punch a few buttons to get statistical results. The formulas that produce 

the statistics contain a great deal of information about the meaning of those statistics. The text breaks down formulas 

into tabular form so that students can see the information in the formula. We find it useful to take class time to 

discuss formulas. For instance, an essential part of the standard deviation formula is the comparison of each data 

value with the mean. When we point this out to students, it gives meaning to the standard deviation. When students 

understand the content of the formulas, the numbers they get from their calculators or computers begin to make 

sense. 
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The twelfth edition includes Cumulative Reviews at the end of chapters 3, 6, 9, and 11; these sections tie together 

the concepts from those chapters to help the student to put those concepts in a larger context. The Technology Notes 

briefly describe relevant procedures for using the TI-83Plus/TI-84Plus calculator, Microsoft Excel, MINITAB, and 

SPSS.  

 

For a course in which technologies are strongly incorporated into the curriculum, we provide Technology Guides 

(for TI-83Plus/TI-84Plus, MINITAB, Microsoft Excel, and SPSS). These guides gives specific hints for using the 

technologies and also provide Lab Activities to help students explore various statistical concepts.  

 

Finally, accompanying the text are several interactive components that help to demonstrate key concepts. Through 

on-line tutorials and an interactive textbook, the student can manipulate data to see and understand the effects in 

context. 
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Alternate Paths through the Text 
 

As with previous editions, the twelfth edition of Understandable Statistics is designed to be flexible. In most one-

semester courses, it is not possible to cover all the topics. The text provides many topics, so you can tailor a course 

to fit student needs. The text also aims to be a readable reference for topics not specifically included in your course. 

 

Table of Prerequisite Material 

 

Chapter Prerequisite Sections 

 

1 Getting Started 

 

None 

 

2 Organizing Data 

 

1.1, 1.2 

 

3 Averages and Variation 

 

1.1, 1.2, 2.2 

 

4 Elementary Probability Theory 

 

1.1, 1.2, 2.2, 3.1, 3.2 

 

5 The Binomial Probability Distribution 

 and Related Topics 

 

1.1, 1.2, 2.2, 3.1, 3.2, 4.1, 4.2, with 4.3 useful but not essential 

 

6 Normal Curves and Sampling    

Distributions 

  With 6.6 omitted 

  With 6.6 included 

 

 

 

1.1, 1.2, 2.2, 3.1, 3.2, 4.1, 4.2, 5.1 

Add 5.2, 5.3 

 

7 Estimation 

  With 7.3 and parts of 7.4 omitted 

  With 7.3 and all of 7.4 

 

 

1.1, 1.2, 2.2, 3.1, 3.2, 4.1, 4.2, 5.1, 6.1, 6.2, 6.3, 6.4, 6.5 

Add 5.2, 5.3, 6.6 

 

8 Hypothesis Testing 

  With 8.3 and parts of 8.4 omitted 

  With 8.3 and all of 8.4 

 

 

1.1, 1.2, 2.2, 3.1, 3.2, 4.1, 4.2, 5.1, 6.1, 6.2, 6.3, 6.4, 6.5 

Add 5.2, 5.3, 6.6 

 

9 Correlation and Regression 

  9.1 and 9.2 

  9.3 and 9.4 

 

 

1.1, 1.2, 3.1, 3.2 

Add 4.1, 4.2, 5.1, 6.1, 6.2, 6.3, 6.4, 6.5, 7.1, 8.1, 8.2 

 

10 Chi-Square and F Distributions  

  With 10.3 omitted 

  With 10.3 included 

 

 

1.1, 1.2, 2.2, 3.1, 3.2, 4.1, 4.2, 5.1, 6.1, 6.2, 6.3, 6.4, 6.5, 8.1  

Add 7.1 

 

11 Nonparametric Statistics 

   

 

 

1.1, 1.2, 2.2, 3.1, 3.2, 4.1, 4.2, 5.1, 6.1, 6.2, 6.3, 6.4, 6.5, 8.1, 8.3  
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Teaching Tips for Each Chapter 

CHAPTER 1: GETTING STARTED 

Double-Blind Studies (Section 1.3) 

The double-blind method of data collection, mentioned at the end of Section 1.3, is an important part of standard 

research practice. A typical use is in testing new medications. Because the researcher does not know which patients 

are receiving the experimental drug and which are receiving the established drug (or a placebo), the researcher is 

prevented from doing things subconsciously that might skew the results. 

 

If, for instance, the researcher communicates a more optimistic attitude to patients in the experimental group, this 

could influence how they respond to diagnostic questions or actually might influence the course of their illness. And 

if the researcher wants the new drug to prove effective, this could subconsciously influence how he or she handles 

information related to each patient’s case. All such factors are eliminated in double-blind testing. 

 

The following appears in the physician’s dosing instructions package insert for the prescription drug QUIXIN™: 

 

In randomized, double-masked, multicenter controlled clinical trials where patients were dosed for 

5 days, QUIXIN™ demonstrated clinical cures in 79% of patients treated for bacterial 

conjunctivitis on the final study visit day (days 6–10).  

 

Note the phrase double-masked. Apparently, this is a synonym for double-blind. Since double-blind is used widely 

in the medical literature and in clinical trials, why do you suppose that the company chose to use double-masked 

instead? 

 

Perhaps this will provide some insight: QUIXIN™ is a topical antibacterial solution for the treatment of 

conjunctivitis; i.e., it is an antibacterial eye drop solution used to treat an inflammation of the conjunctiva, the 

mucous membrane that lines the inner surface of the eyelid and the exposed surface of the eyeball. Perhaps, since 

QUIXIN™ is a treatment for eye problems, the manufacturer decided the word blind should not appear anywhere in 

the discussion. 

 

Source: Package insert. QUIXIN™ is manufactured by Santen Oy, P.O. Box 33, FIN-33721 Tampere, Finland, and 

marketed by Santen, Inc., Napa, CA 94558, under license from Daiichi Pharmaceutical Co., Ltd., Tokyo, Japan. 

 

CHAPTER 2: ORGANIZING DATA 

Emphasize when to use the various graphs discussed in this chapter: bar graphs when comparing data sets, circle 

graphs for displaying how data are dispersed into several categories, time-series graphs to display how data change 

over time, histograms or frequency polygons to display relative frequencies of grouped data, and stem-and-leaf 

displays for displaying grouped data in a way that does not lose the detail of the original raw data. 

Drawing and Using Ogives (Section 2.1) 

The text describes how an ogive, which is a graph displaying a cumulative-frequency distribution, can be 

constructed easily using a frequency table. However, a graph of the same basic sort can be constructed even more 

quickly than that. Simply arrange the data values in ascending order and then plot one point for each data value, 

where the x coordinate is the data value and the y coordinate starts at 1 for the first point and increases by 1 for each 

successive point. Finally, connect adjacent points with line segments. In the resulting graph, for any x, the 

corresponding y value will be (roughly) the number of data values less than or equal to x. 

 

 

For example, here is the graph for the data set 64, 65, 68, 73, 74, 76, 81, 84, 85, 88, 92, 95, 95, and 99: 
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This graph is not technically an ogive because the possibility of duplicate data values (such as 95 in this example) 

means that the graph will not necessarily be a function. But the graph can be used to get a quick fix on the general 

shape of the cumulative distribution curve. And by implication, the graph can be used to get a quick idea of the 

shape of the frequency distribution, as illustrated below. 

 

      
 

 

      
 

The pseudo-ogive obtained from the example data set suggests a uniform distribution on the interval 63–100 or 

thereabouts. 

 

 

CHAPTER 3: AVERAGES AND VARIATION 

Students should be instructed in the various ways that sets of numeric data can be represented by a single number. 

The concepts of this section illustrate for students the need for this kind of representation.  
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The different ways this can be done are discussed in Section 3.1. The mean, median, and mode vary in 

appropriateness depending on the situation. In many cases of numeric data, the mean is the most appropriate 

measure of central tendency. If the mean is larger or smaller than most of the data values, however, then the median 

may be the number that best represents the data set. The median is most appropriate usually if the data set is annual 

salaries, costs of houses, or any data set that contains one or a few very large or very small values. The mode would 

be most appropriate if the population were the votes in an election or Nielsen television ratings, for example. 

Students should get acquainted with these concepts by calculating the mean, median, and mode for different data 

sets and then interpreting the meaning of each one and determining which measure of central tendency is the most 

appropriate. 

 

The range, variance, and standard deviation can be presented to students as other numbers that aid in the 

representation of a data set in that they measure how data are dispersed. Students will begin to have a better 

understanding of these measures of dispersion by calculating these numbers for given data sets and interpreting their 

respective meanings. These concepts of central tendency and dispersion also can be applied to grouped data, and 

students should become acquainted with interpreting these measures for given realistic situations in which data have 

been collected. 

 

Chebyshev’s theorem is important to discuss with students because it relates to the mean and standard deviation of 

any data set. 

 

Finally, the mean, median, first and third quartiles, and range of a data set can be viewed easily in a box-and-

whisker plot. 

 

CHAPTER 4: ELEMENTARY PROBABILITY THEORY 

What Is Probability? (Section 4.1) 

As the text describes, there are several methods for assigning a probability to an event. Probability based on intuition 

is often called subjective probability. Thus understood, probability is a numerical measure of a person’s estimate of 

the likelihood of some event. Subjective probability is assumed to be reflected in a person’s decisions: The higher an 

event’s probability, the more the person would be willing to bet on its occurring. 

 

Probability based on relative frequency is often called experimental probability because the relative frequency is 

calculated from an observed history of experiment outcomes. But we are already using the word experiment in a way 

that is neutral among the different treatments of probability—namely, as the name for the activity that produces 

various possible outcomes. So when we are talking about probability based on relative frequency, we will call this 

observed probability. 

 

Probability based on equally likely outcomes is often called theoretical probability because it is ultimately derived 

from a theoretical model of the experiment’s structure. The experiment may be conducted only once, or not at all, 

and need not be repeatable. 

 

These three ways of treating probability are compatible and complementary. For a reasonable, well-informed person, 

the subjective probability of an event should match the theoretical probability, and the theoretical probability, in 

turn, predicts the observed probability as the experiment is repeated many times. 

 

Also, it should be noted that although in statistics probability is officially a property of events, it can be thought of as 

a property of statements as well. The probability of a statement equals the probability of the event that makes the 

statement true. 

 

Probability and statistics are overlapping fields of study; if they weren’t, there would be no need for a chapter on 

probability in a book on statistics. So the general statement in the text that probability deals with known populations, 

whereas statistics deals with unknown populations is necessarily a simplification. However, the statement does 

express an important truth: If we confront an experiment we initially know absolutely nothing about, then we can 

collect data but we cannot calculate probabilities. In other words, we can only calculate probabilities after we have 
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formed some idea of, or acquaintance with, the experiment. To find the theoretical probability of an event, we have 

to know how the experiment is set up. To find the observed probability, we have to have a record of previous 

outcomes. And as reasonable people, we need some combination of those same two kinds of information to set our 

subjective probability. 

 

This may seem obvious, but it has important implications for how we understand technical concepts encountered 

later in the course. There will be times when we would like to make a statement, say, about the mean of a population 

and then give the probability that this statement is true—i.e., the probability that the event described by the 

statement occurs (or has occurred). What we discover when we look closely, however, is that often this cannot be 

done. Often we have to settle for some other conclusion instead. The Teaching Tips for Sections 7.1 and 8.1 describe 

two instances of this problem. 

 

CHAPTER 5: THE BINOMIAL PROBABILITY DISTRIBUTION AND RELATED 
TOPICS 

Binomial Probabilities (Section 5.2) 

Students should be able to show that pq = p(1 – p) has its maximum value at p = 0.5. There are at least three ways to 

demonstrate this: graphically, algebraically, and using calculus. 

 

Graphical method 

 

Recall that 0 ≤ p ≤ 1. So, for q = 1 – p, 0 ≤ q ≤ 1 and 0 ≤ pq ≤ 1. Plot y = pq = p(1 – p) using MINITAB, a graphing 

calculator, or other technology. The graph is a parabola. Observe which value of p maximizes pq. (Many graphing 

calculators can find the maximum value and where it occurs.) 

 

So pq has a maximum value of 0.25 when p = 0.5. 

 

Algebraic method 

 

From the definition of q, it follows that pq = p(1 – p) = p – p2 = –p2 + p + 0. Recognize that this is a quadratic 

function of the form ax2 + bx + c, where p is used instead of x, and a = –1, b = 1, and c = 0.  

 

The graph of a quadratic function is a parabola, and the general form of a parabola is y = a(x – h)2 + k. The parabola 

opens up if a > 0 and opens down if a < 0 and has a vertex at (h, k). If the parabola opens up, it has its minimum at x 

= h, and the minimum value of the function is y = k. Similarly, if the parabola opens down, it has its maximum value 

of y = k, when x = h.  

 

Using the method of completing the square, we can rewrite y = ax2 + bx + c in the form y = a(x – h)2 + k to show that 

2

b
h

a
   and 

2

.
4

b
k c

a
   When a = –1, b = 1, and c = 0, it follows that h = 1/2 and k = 1/4. So the value of p that 

maximizes pq is p = 1/2, and then pq = 1/4. This confirms the results of the graphical solution.  

 

Calculus-based method  
 

Advanced Placement students probably have had (or are taking) calculus, including tests for local extrema. For a 

function with continuous first and second derivatives, at an extremum, the first derivative equals 0, and the second 

derivative is either positive (at a minimum) or negative (at a maximum). 
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The first derivative of f(p) = pq = p(1  p) is given by 

2

( ) [ (1 )]

[ ]

2 1

d
f p p p
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d
p p
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So 
1

2.
2

f
 
   
 

 

Since the second derivative is negative when the first derivative equals 0, f(p) has a maximum at 
1

.
2

p   

 

This result has implications for confidence intervals for p; see the Teaching Tips for Chapter 7. 

 

CHAPTER 6: NORMAL CURVES AND SAMPLING DISTRIBUTIONS 

Emphasize the differences between discrete and continuous random variables with examples of each. 

 

Emphasize how normal curves can be used to approximate the probabilities of both continuous and discrete random 

variables, and in the cases when the distribution of a data set can be approximated by a normal curve, such a curve is 

defined by two quantities: the mean and standard deviation of the data. In such a case, the normal curve is defined 

by this equation:  

 
2

1
2

2

x

e
y





 




  

 

Review Chebyshev’s theorem from Chapter 3. Emphasize that this theorem implies that for any data set, 

at least 75% of the data lie within 2 standard deviations on each side of the mean, at least 88.9% of the data lie 

within 3 standard deviations on each side of the mean, and at least 93.75% of the data lie within 4 standard 

deviations on each side of the mean. 

 

In comparison, a data set that has a distribution that is symmetric and bell-shaped, or in particular, an approximate 

normal distribution, is more restrictive in that  

 

1. Approximately 68% of the data values lie within 1 standard deviation on each side of the mean, 

2. Approximately 95% of the data values lie within 2 standard deviations on each side of the mean, and 

3. Approximately 99.7% of the data values lie within 3 standard deviations on each side of the mean. 

 

Remind students regularly that a z value equals the number of standard deviations from the mean for data values of 

any distribution approximated by a normal curve. 
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Emphasize the connection between the area under a normal curve and probability values of the random variable. 

That is, emphasize that the area under any normal curve equals 1 and that the percentage of area under the curve 

between given values of the random variable equals the probability that the random variable will be between these 

values. The values in a z table are areas and probability values. 

 

Emphasize the differences between population parameters and sample statistics. Point out that when knowledge of 

the population is unavailable, then knowledge of a corresponding sample statistic must be used to make inferences 

about the population. 

 

Emphasize the main two facts derived from the central limit theorem:  

 

1. If x is a random variable with a normal distribution whose mean is μ and standard deviation is σ, then the 

means of random samples for any fixed-size n taken from the x distribution is a random variable x  that has 

a normal distribution with mean μ and standard deviation .n   

 

2. If x is a random variable with any distribution whose mean is μ and standard deviation is σ, then the mean 

of random samples of a fixed-size n taken from the x distribution is a random variable x  that has a 

distribution that approaches a normal distribution with mean μ and standard deviation n  as n increases 

without limit. 

 

Choosing sample sizes greater than 30 is an important point to emphasize in the situation mentioned in part 2 of the 

central limit theorem above. This commonly accepted convention ensures that the x distribution of part 2 will have 

an approximate normal distribution regardless of the distribution of the population from which these samples are 

drawn. 

 

Emphasize that the central limit theorem allows us to infer facts about populations from sample means having 

normal distributions. 

 

Emphasize the conditions whereby a binomial probability distribution (discussed in Chapter 5) can be approximated 

by a normal distribution: np > 5 and n(1 – p) > 5, where n is the number of trials and p is the probability of success 

in a single trial. 

 

When a normal distribution is used to approximate a discrete random variable (such as the random variable of a 

binomial probability experiment), the continuity correction is an important concept to emphasize to students. A 

discussion of this important adjustment can be a good opportunity to compare discrete and continuous random 

variables. 

 

Emphasize that facts about sampling distributions for proportions relating to binomial experiments can be inferred if 

the same conditions satisfied by a binomial experiment that can be approximated by a normal distribution are 

satisfied: np > 5 and n(1 – p) > 5, where n is the number of trials and p is the probability of success in a single trial. 

 

Emphasize the difference in the continuity correction that must be taken into account in the sampling distribution for 

proportions and the continuity correction for a normal distribution used to approximate the probability distribution 

of the discrete random variable in a binomial probability experiment. That is, instead of subtracting 0.5 from the left 

endpoint and adding 0.5 to the right endpoint of an interval involved in a normal distribution approximating a 

binomial probability distribution, 0.5/n must be subtracted from the left endpoint and 0.5/n must be added to the 

right endpoint of such an interval when a normal distribution is used to approximate a sampling distribution for 

proportions. 

 

CHAPTER 7: ESTIMATION 

As the text says, nontrivial probability statements involve variables, not constants. And if the mean of a population 

is considered a constant, then the event that this mean falls in a certain range with known numerical bounds has 

either probability 1 or probability 0. 
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However, we might instead think of the population mean as itself a variable because, after all, the value of the mean 

is unknown initially. In other words, we may think of the population from which we are sampling as one of many 

populations—a population of populations, if you like. One of these populations has been randomly selected for us to 

work with, and we are trying to figure out which population it is or at least what its mean is. 

 

If we think of our sampling activity in this way, we can then think of the event “The mean lies between a and b” as 

having a nontrivial probability of being true. Can we now create a 90% confidence interval and then say that the 

mean has a 90% probability of being in that interval? It might seem so, but in general, the answer is no. Even though 

a procedure might have exactly a 90% success rate at creating confidence intervals that contain the mean, a 

confidence interval created by such a procedure will not, in general, have exactly a 90% chance of containing the 

mean. 

 

How is this possible? To understand this paradox, let us turn from mean finding to a simpler task: guessing the color 

of a randomly drawn marble. Suppose that a sack contains some red marbles and some blue marbles. And suppose 

that we have a friend who will reach in, draw out a marble, and announce its color while we have our backs turned. 

The friend can be counted on to announce the correct color exactly 90% of the time and the wrong color the other 

10% of the time. So, if the marble drawn is blue, the friend will say “blue” 9 times out of 10 and “red” 1 time. And 

likewise for the red marble. This is like creating a 90% confidence interval. 

 

Now the friend reaches in, pulls out a marble, and announces, “blue.” Does this mean that we are 90% sure that the 

friend is holding a blue marble? It depends on what we think about the mix of marbles in the bag. Suppose that we 

think that the bag contains three red marbles and two blue ones. Then we expect the friend to draw a red marble 3/5 

of the time and announce “blue” 10% of those times, or 3/50 of all draws. And we expect the friend to draw a blue 

marble 2/5 of the time and announce “blue” 90% of those times, or 18/50 of all draws. This means that the ratio of 

true “blue” announcements to false ones is 18:3, or 6:1. And thus we attach a probability of 6/7 = 85.7%, not 90%, 

to our friend’s announcement that the marble drawn is blue, even though we believe our friend to be telling the truth 

90% of the time. For similar reasons, if the friend says “red,” we will attach a probability of 93.1% to this claim. 

Simply put, our initial belief that there are more red marbles than blue ones pulls our confidence in a “blue” 

announcement downward and our confidence in a “red” announcement upward from the 90% level. 

 

Now, if we believe that there is an equal number of red and blue marbles in the bag, then, as it turns out, we will 

attach 90% probability to “blue” announcements and to “red” announcements as well. But this is a special case. In 

general, the probabilities we attach to each of our friend’s statements will be different from the frequency with 

which we think our friend is telling the truth. Furthermore, if we have no idea about the mix of marbles in the bag, 

then we will be unable to set probabilities for our friend’s statements because we will be unable to run the 

calculation for how often our friend’s “blue” statements are true and our friend’s “red” statements are true. In other 

words, we cannot justify simply setting our probability equal to the test’s confidence level by default. 

 

This story has two morals. First, the probability of a statement is one thing, and the success rate of a procedure that 

tries to come up with true statements is another. Second, our prior beliefs about the conditions of an experiment are 

an unavoidable element in our interpretation of any sample data. 

 

Let us apply these lessons to the business of finding confidence intervals for population means. When we create a 

90% confidence interval, we will in general not be 90% sure that the interval contains the mean. It could happen to 

turn out that we were 90% sure, but this will depend on what ideas we had about the population mean going in. 

Suppose that we were fairly sure, to start with, that the population mean lay somewhere between 10 and 20, and 

suppose that we then took a sample that led to the construction of a 90% confidence interval that ran from 31–46. 

We would not conclude, with 90% certainty, that the mean lay between 31 and 46. Instead, we would have a 

probability lower than that because we previously thought the mean was outside that range. At the same time, we 

would be much more ready to believe that the mean lay between 31 and 46 than we were before because, after all, a 

procedure with a 90% success rate produced that prediction. Our exact probability for the “between 31 and 46” 

statement would depend on our entire initial probability distribution for values of the population mean—something 

we would have a hard time coming up with if the question were put to us. Thus, under normal circumstances, our 

exact level of certainty about the confidence interval could not be calculated. 

 

So the general point made in the text holds even if we think of a population mean as a variable. The procedure for 
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finding a confidence interval of confidence level c does not, in general, produce a statement (about the value of a 

population mean) that has a probability c of being true. 

Confidence Intervals for p (Section 7.3) 

The result obtained in the Teaching Tip for Chapter 5 has implications for the confidence interval for p. The most 

conservative interval estimate of p, the widest possible confidence interval in a given situation, is obtained when 

cE z pq n  is calculated using p = 1/2.  

 

CHAPTER 8: HYPOTHESIS TESTING 

P-Value Method vs. Critical Region Method 

The most popular method of statistical testing is the P-value method. For this reason, the P-value method is 

emphasized in this book. 

 

The P-value method was used extensively by a famous statistician, R. A. Fisher, and is the most popular method of 

testing in use today. At the end of Section 8.2, another method of testing called the critical region method is 

presented. It was used extensively by statisticians J. Neyman and E. Pearson. In recent years, the use of this method 

has been declining. 

 

The critical region method for hypothesis testing is convenient when distribution tables are available for finding 

critical values. However, most statistical software and research journal articles give P values rather than critical 

values. Most fields of study that require statistics want students to be able to use P values. 

 

Emphasize that for a fixed, preset level of significance , both methods are logically equivalent. 

What a Hypothesis Test Tells Us (Sections 8.1–8.3) 

The procedure for hypothesis testing with significance levels may confuse some students at first, especially because 

the levels are chosen somewhat arbitrarily. Why, the students may wonder, don’t we just calculate the likelihood 

that the null hypothesis is true? Or is that really what we’re doing when we find the P value? 

 

Once again, we run the risk of confusion over the role of probability in our statistical conclusions. The P value is not 

the same thing as the probability, in light of the data, of the null hypothesis. Instead, the P value is the probability 

that the data would turn out the way they did, assuming that the null hypothesis is true. Just as with confidence 

intervals, we have to be careful not to think that we are finding the probability of a given statement when we are in 

fact doing something else. 

 

To illustrate, consider two coins in a sack, one fair and one two-headed. One of these coins is pulled out at random 

and flipped. It comes up heads. Let us take as our null hypothesis “The flipped coin was the fair one.” The 

probability of the outcome, given the null hypothesis, is 1/2 because a fair coin will come up heads half the time. 

This probability is in fact the P value of the outcome. On the other hand, the probability that the null hypothesis is 

true, given the evidence, is 1/3 because out of all the heads outcomes one will see in many such trials, 1/3 are from 

the fair coin. 

 

Now suppose that instead of containing two coins of known character, the sack contains an unknown mix—some 

fair coins, some two-headed coins, and possibly some two-tailed coins as well. Then we still can calculate the P 

value of a heads outcome because the probability of “heads” with a fair coin is still 1/2. But the probability that the 

coin is fair, given that we’re seeing heads, cannot be calculated because we know nothing about the mix of coins in 

the bag. So the P value of the outcome is one thing, and the probability of the null hypothesis is another. 

 

The lesson now should be familiar. Without some prior idea about the character of an experiment, either based on a 

theoretical model or based on previous outcomes, we cannot attach a definite probability to a statement about the 

experimental setup or its outcome. 
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This is the usual situation in hypothesis testing. We normally lack the information needed to calculate probabilities 

for the null hypothesis and its alternative. What we do instead is to take the null hypothesis as defining a well-

understood scenario from which we can calculate the likelihoods of various outcomes—the probabilities of various 

kinds of sample results, given that the null hypothesis is true. By contrast, the alternative hypothesis includes all 

sorts of scenarios, in some of which (for instance) two population means are only slightly different, in others of 

which the two means are far apart, and so on. Unless we have identified the likelihoods of all these possibilities 

relative to each other and to the null hypothesis, we will not have the background information needed to calculate 

the probability of the null hypothesis from sample data. 

 

In fact, we will not have the data necessary to calculate the power, 1 – β, of a hypothesis test. Finding the power 

requires knowing the H1 distribution. Because we cannot specify the H1 distribution when we are concerned with 

things such as diagnosing disease (instead of drawing coins from a sack and the like), we normally cannot determine 

the probability of the null hypothesis in light of the evidence. Instead, we have to content ourselves with quantifying 

the risk α of rejecting the hypothesis when it is true. 

A Paradox About Hypothesis Tests 

The way hypothesis tests work leads to a result that at first seems surprising. It sometimes can happen that, at a 

given level of significance, a one-tailed test leads to rejection of the null hypothesis, whereas a two-tailed test does 

not. Apparently, one can be justified in concluding that k   (or k   as the case may be) but not justified in 

concluding that k  —even though the latter conclusion follows from the former! What is going on here? 

 

This paradox dissolves when one remembers that a one-tailed test is used only when one has appropriate 

information. With the null hypothesis 0: ,H k  we choose the alternative hypotheses 1:H k   only if we are 

already sure that µ is not less than 1: .H k   In effect, this assumption boosts the force of any evidence that µ does 

not equal k—and if it is not less than or equal to k, it must be greater. 

 

In other words, when a right-tailed test is appropriate, rejecting the null hypothesis means concluding both that  

k   and that .k   But when there is no justification for a one-tailed test, one must use a two-tailed test and 

must have somewhat stronger evidence before concluding that .k   

 

CHAPTER 9: CORRELATION AND REGRESSION  

Least-Squares Criteria (Section 9.2) 

With some sets of paired data, it will not be obvious which is the explanatory variable and which is the response 

variable. Here it may be worth mentioning that for linear regression, the choice matters. The results of a linear 

regression analysis will differ depending on which variable is chosen as the explanatory variable and which is 

chosen as the response variable. This is not immediately obvious. We might think that with x as the explanatory 

variable, we could just solve the regression equation y = a + bx for x in terms of y to obtain the regression equation 

that we would get if we took y as the explanatory variable instead. But this would be a mistake. 

 

The figure below shows the vertical distances from data points to the line of best fit. The line is defined so as to 

make the sum of the squares of these vertical distances as small as possible. 
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Now the next figure shows the horizontal distances from the data points to the same line. These are the distances 

whose sum of squares would be minimized if the explanatory and response variables switched roles. With such a 

switch, the graph would be flipped over, and the horizontal distances would become vertical ones. But the line that 

minimizes the sum of squares for vertical distances is not, in general, the same line that minimizes the sum of 

squares for horizontal distances. 

 

 

 
 

 

So there is more than one way, mathematically, to define the line of best fit for a set of paired data. This raises a 

question: What is the proper way to define the line of best fit? 

 

Let us turn this question around. Under what circumstances is a best fit based on vertical distances the right way to 

go? Well, intuitively, the distance from a data point to the line of best fit represents some sort of deviation from the 

ideal value. We can conceptualize this most easily in terms of measurement error. If we treat the error as a strictly 

vertical distance, then we are saying that in each data pair, the second value is possibly off, but the first value is 

exactly correct. In other words, the least-squares method with vertical distances assumes that the first value in each 

data pair is measured with essentially perfect accuracy, whereas the second is measured only imperfectly. 

An illustration shows how these assumptions can be realistic. Suppose that we are measuring the explosive force 

generated by the ignition of varying amounts of gunpowder. The weight of the gunpowder is the explanatory 

variable, and the force of the resulting explosion is the response variable. It could easily happen that we were able to 

measure the weight of gunpowder with great exactitude—down to the thousandth ounce—but that our means of 

measuring explosion force was quite crude, such as the height to which a wooden block was projected into the air by 

the explosion. We then would have an experiment with a good deal of error in the response variable measurement 
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but for, practical purposes, no error in the explanatory variable measurement. This would all be perfectly in accord 

with the vertical-distance criterion for finding the line of best fit by the least-squares method. 

 

But now consider a different version of the gunpowder experiment. This time we have a highly refined means of 

measuring explosive force (some sort of electronic device, let us say), and at the same time we have only a very 

crude means of measuring gunpowder mass (perhaps a rusty pan balance). In this version of the story, the error 

would be in the measurement of the explanatory variable, and a horizontal least-squares criterion would be called 

for. 

 

Now, the most common situation is one in which both the explanatory and the response variables contain some 

error. The preceding discussion suggests that the most appropriate least-squares criterion for goodness of fit for a 

line through the cluster of data points would be a criterion in which error was represented as a line lying at some 

slant, as in the figure below. 

 

 

 
 

 

To apply such a criterion, we would have to figure out how to define distance in two dimensions when the x and y 

axes have different units of measure. We will not try to solve that puzzle here. Instead, we just summarize what we 

have learned. There is more than one least-squares criterion for fitting a line to a bivariate data set, and the choice of 

which criterion to use implies an assumption about which variable(s) is affected by the error (or other deviation) that 

moves points off the line representing ideal results. 

 

And finally, we now see that the standard use of vertical distances in the least-squares method implies an assumption 

that the error is predominantly in the response variable. This is often a reasonable assumption to make because the 

explanatory variable is frequently a control variable—i.e., a variable under the experimenter’s control and that thus 

generally is capable of being adjusted with a fair amount of precision. The response variable, by contrast, is the one 

that simply must be measured and that cannot be fine-tuned through an experimenter’s adjustment. However, it is 

worth noting that this is only the typical relationship, not a necessary one (as the second gunpowder scenario 

shows). 

 

Finally, it is also worth nothing that both the vertical and horizontal least-squares criteria will produce a line that 

passes through the point ( , ).x y  Thus the vertical and horizontal least-squares lines must either coincide (which is 

atypical but not impossible) or intersect at ( , ).x y  The other property the two lines have in common is the 

correlation coefficient r. It is easy to see, looking at the formula for r, that the value of r does not depend on which 

variable is chosen as the explanatory one and which is chosen as the response one. 
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Variables and the Issue of Cause and Effect (Section 9.2) 

The relationship between two measured variables x and y may not, in physical terms, be one of cause and effect, 

respectively. It often is, of course, but instead it may happen that y is the cause and x is the effect. Note that in an 

example where x = cricket chirps per second and y = air temperature, y is obviously the cause and x the effect. In 

other situations, x and y will be two effects of a common, possibly unknown, cause. For example, x might be a 

patient’s blood sugar level, and y might be the patient’s body temperature. Both these variables could be caused by 

an illness, which might be quantified in terms of a count of bacterial activity. The point to remember is that although 

the x-causes-y scenario is typical, strictly speaking, the designations explanatory variable and response variable 

should be understood not in terms of a causal relationship but in terms of which quantity is known initially and 

which is inferred. 

 

CHAPTER 10: CHI-SQUARE AND F DISTRIBUTIONS 

Emphasize that both the 2 distribution and the F distribution are not symmetric and have only nonnegative values. 

 

Emphasize that the applications of the 2 distribution include the test for independence of two factors, goodness of 

fit of a present distribution to a given distribution, and whether a variance (or standard deviation) has changed or 

varies from a known population variance (or standard deviation). The 2 distribution is also used to find a 

confidence interval for a variance (or standard deviation). 

 

Emphasize that applications of the F distribution include the test of whether the variances (or equivalently, standard 

deviations) of two independent, normal distributions are equal. A second application of the F distribution is the one-

way ANOVA test, which determines whether a significant difference exists between any of several sample means of 

groups taken from populations that are each assumed to be normally distributed, independent of one another, and in 

which the groups come from distributions with approximately the same standard deviation. A third application of the 

F distribution is a two-way ANOVA test: a test of whether differences exist in the population means of varying 

levels of two factors where each level of each factor is assumed to be from a normal distribution and where all levels 

of both factors are assumed to have equal variances. 

 

CHAPTER 11: NONPARAMETRIC STATISTICS 

Review the classifications of data discussed in Chapter 1: ratio, interval, ordinal, and nominal. 

 

Emphasize that the methods of nonparametric statistics are quite general and are applied when no assumptions are 

made about the population distributions from which samples are drawn, such as that the distributions are normal or 

binomial, for example. 

 

Emphasize that the sign test is used when comparing sample distributions from two populations that are not 

independent, such as when a sample is measured twice, as in a “before-and-after” study. Emphasize that the sign test 

requires that the number of positive and negative signs between the samples number at least 12. Point out that since 

the proportion of plus signs to total number of plus and minus signs of the sampling distribution for x follows a 

normal distribution, the critical values for the sign test are based on z values from a normal distribution. 

 

Emphasize that the rank-sum test for testing the difference between sample means can be used when it is not known 

whether the populations the samples come from are normally distributed or when assumptions about equal 

population variances are not satisfied. An important point to emphasize is that the rank-sum test requires that the 

sample size of each sample be at least 11. Emphasize that since the sampling distribution for the sum of ranks R 

follows a normal distribution, the critical values and sample statistics of the test are z values from a normal 

distribution. 

 

Emphasize that the Spearman rank correlation is used to compare ranked data from two sources. 
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Emphasize that for the Spearman rank correlation coefficient ,sr 1 1,sr    and discuss the meanings of 

1, 1, 0,s s s sr r r r     close to 1, and rs close to –1. 

 

Compare the similarity of rs to the correlation coefficient r from Chapter 10. 

 

The runs test for randomness is a very useful nonparametric test. 

 

0:H  The symbols are randomly mixed in the sequence. 

1:H  The symbols are not randomly mixed in the sequence. 

 

In Section 11.4 we restrict our attention to a sequence of two symbols. Any sequence of numbers can be converted 

to a sequence of symbols A for above the median and B for below the median. Remind students that Table 9 in 

Appendix II provides critical values for  = 0.05 only. There are tables available for other levels of significance. 

However, in this text, we restrict  to 0.05 when 1n  and 2n  are both less than or equal to 20. 
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Hints for Distance Education Courses 
 

Distance education uses various media, each of which can be used in a one-way or interactive mode. Here is a 

representative list: 

 

 

 One-Way Interactive 

Medium:          Audio MP3 files Phone 

Audiovisual DVDs, MP4 Videoconferencing 

Data Computer-resident tutorials, 

Web tutorials 

Social Media, E-mail, chat, discussion 

boards 

Print Texts, workbooks Mailed-in assignments, mailed-back 

instructor comments, fax exchanges 

 

Sometimes the modes are given as asynchronous (students working on their schedules) versus synchronous (students 

and instructors working at the same time), but synchronous scheduling normally makes sense only when this enables 

some element of interactivity in the instruction. 

 

Naturally, the media and modes may be mixed and matched. A course might, for instance, use a one-way video feed 

with interactive audio plus discussion lists.  

THINGS TO KEEP IN MIND 

In many online courses, printed material is a foundational part of the instruction. In an online course, the textbook or 

e-book is at least as important as in a traditional course because it is the one resource that requires no special 

equipment to use and whose use is not made more difficult by the distance separating student and instructor. 

 

Because students generally obtain all course materials at once, before instruction begins, midcourse adjustments of 

course content generally are not practicable. Plan the course carefully up front so that everything is in place when 

instruction begins. 

 

In online courses, students can be assumed to have ready access to computers while working on their own. This 

creates the opportunity for technology-based assignments that in a traditional course might be feasible at best as 

optional work (e.g., assignments using SPSS, MINITAB, or Microsoft Excel; see the corresponding guides that 

accompany Understandable Statistics). However, any time students have to spend learning how to use unfamiliar 

software will add to their overall workload and possibly to their frustration level. Remember this when choosing 

technology-based work to incorporate. 

 

Remember that even (and perhaps especially) in online education, students take a course because they want to 

interact with a human being rather than just read a book. The goal of distance instruction is to make that possible for 

students who cannot enroll in a traditional course. Lectures should not turn into slide shows with voice commentary, 

even though these may be technologically easier to transmit than, say, real-time video. Keep the human element 

uppermost. 

 

All students should be self-motivated, but in real life, nearly all students benefit from a little friendly supervision 

and encouragement. This goes double for distance education. Make an extra effort to check in with students one-on-

one, to ask how things are going, and to remind them of things they may be forgetting or neglecting. 
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CHALLENGES IN DISTANCE EDUCATION 

 

Technology malfunctions often plague distance courses. To prevent this from happening in yours: 

 

 Don’t take on too much at once. As the student sites multiply, so do the technical difficulties. Try the 

methodology with one or two remote sites before expanding. 

 

 Plan all technology use well in advance and thoroughly test all equipment before the course starts. 

 

 Have redundant and backup means for conducting class sessions. If, for instance, a two-way videoconferencing 

link goes down, plan for continuing the lecture by speakerphone, with students referring to predistributed 

printed materials as needed. 

 

 Allow enough slack time in lectures for extra logistical tasks and occasional technical difficulties. 

 

 If possible, do a precourse dry run with at least some of the students that so they can get familiar with the 

equipment and procedures and alert you to any difficulties they run into. 

 

 When it is feasible, have a facilitator at each student site. This person’s main job is to make sure that the 

technology at the student end works smoothly. If the facilitator can assist with course administration and answer 

student questions about course material, so much the better. 

 

In a distance course, establishing rapport with students and making them comfortable can be difficult. 

 

 An informal lecture style, often effective in traditional classrooms, can be even more effective in a distance 

course. Be cheerful and use humor. (In cross-cultural contexts, though, remember that what is funny to you may 

fall flat with your audience.) 

 

 Remember that your voice will not reach the students with the same clarity it would in a traditional classroom. 

Speak clearly, not too fast, and avoid overly long sentences. Pause regularly. 

 

 Early in the course, work in some concrete, real-world examples and applications to help the students relax, roll 

up their sleeves, and forget about the distance learning aspect of the course. 

 

 If the course is interactive, via teleconferencing or real-time typed communication, get students into “send” 

mode as soon as possible. Ask them questions. Call on individuals if you judge that this is appropriate. 

 

 A student site assistant with a friendly manner also can help students to settle into the course quickly. 

 

The distance learning format will make it hard for you to gauge how well students are responding to your 

instruction. In a traditional course, student incomprehension or frustration often registers in facial expression, tone 

of voice, or muttered comments—all of which are, depending on the instructional format, either difficult or 

impossible to pick up on in a distance course. Have some way for students to give feedback on how well the course 

is going for them. Possibilities: 

 

 Quickly written surveys (“On a scale of 1 to 5, please rate . . . ”) every few weeks. 

 

 Periodic “How are things going?” phone calls or messages from you. 

 

 A student site assistant can act as your “eyes and ears” for this aspect of the instruction, and students may be 

more comfortable voicing frustrations to him or her than to you. 
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Cheating is a problem in any course but especially so in distance courses. Once again, an on-site facilitator is an 

asset. Another means of forestalling cheating is to have open-book exams, which takes away the advantage of 

sneaking a peek at the text. 

 

Good student–instructor interaction takes conscious effort and planning in a distance course. Provide students with a 

variety of ways to contact you: 

 

 Social Media is the handiest way for most students to stay in touch. 

 

 Phone. When students are most likely to be free in the evenings, set the number up for your home address, and 

schedule evening office hours during which students can count on reaching you. 

 

 When students can make occasional in-person visits to your office, provide for this as well. 

ADVANTAGES IN DISTANCE EDUCATION 

Compared with traditional courses, more of the information shared in a distance course is, or can be, preserved for 

later review. Students can review videotaped lectures, instructor–student exchanges via e-mail can be reread, class 

discussions are on a reviewable discussion list, and so on. 

 

To the extent that students are on their own, working out of texts or watching prerecorded video, course material can 

be modularized and customized to suit the needs of individual students. Where a traditional course would 

necessarily be offered as a 4-unit lecture series, the counterpart distance course could be broken into four 1-unit 

modules, with students free to take only the modules they need. This is especially beneficial when the course is 

aimed at students who already have some professional experience with statistics and need to fill in gaps rather than 

comprehensive instruction. 

STUDENT INTERACTION 

Surprisingly, some instructors have found that students interact more with one another in a well-designed distance 

course than in a traditional course, even when the students are physically separated from one another. Part of the 

reason may be a higher level of motivation among distance learners. But another reason is that the same 

technologies that facilitate student–instructor communication—such things as e-mail and discussion lists—also 

facilitate student–student communication. In some cases, distance learners actually have done better than traditional 

learners taking the very same course. Better student interaction was thought to be the main reason. 

 

One implication of this greater student–student interaction is that while group projects involving statistical 

evaluations of real-world data might seem more difficult to set up in a distance course, they are actually no harder, 

and the students learn just as much. The Web has many real-world data sources, such as the U.S. Department of 

Commerce (home.doc.gov), which has links to the U.S. Census Bureau (www.census.gov); the Bureau of Economic 

Analysis (www.bea.gov); and other agencies that compile publicly available data. 
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Frequently Used Formulas 
 

n = sample size  N = population size  f = frequency 

 

Chapter 2  

Class width 
high low

number classes


  (increase to next integer) 

Class midpoint 
upper limit lower limit

2


  

Lower boundary lower boundary of previous class + class width  

 

Chapter 3 

Sample mean   
x

x
n


  

Population mean   
x

N



  

Weighted average 
xw

w





 

Range = largest data value  smallest data value 

Sample standard deviation   
 

2

1

x x
s

n

 



 

Computation formula   
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Population standard deviation   
 

2
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N




 
  

Sample variance   s2 

Population variance   2 

Sample coefficient of variation   100
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x
  

Sample mean for grouped data   
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x
n


  

Sample standard deviation for grouped data   
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Chapter 4 

Probability of the complement of event A      1cP A P A   

Multiplication rule for independent events        andP A B P A P B  

General multiplication rules        
     

and |

and |

P A B P A P B A

P A B P B P A B









 

Addition rule for mutually exclusive events        orP A B P A P B   

General addition rule          or andP A B P A P B P A B    

Permutation rule   
 

,
!

!
n r

n
P

n r



 

Combination rule   
 

,
!

! !
n r

n
C

r n r



 

 

Chapter 5 

Mean of a discrete probability distribution    xP x    

Standard deviation of a discrete probability distribution      
2

x P x     

Given L = a + bx   L

L

a b

b

 

 

 



 

Given W = ax1 + bx2 (x1 and x2 independent)   1 2

2 2 2 2
1 2

W

W

a b

a b

  

  

 

 

 

For Binomial Distributions 

r = number of successes; p = probability of success; q = 1  p 

Binomial probability distribution     ,
r n r

n rP r C p q   

Mean   np   

Standard deviation   npq   

 

Geometric Probability Distribution 

n = number of trial on which first success occurs      
1

1
n

P n p p


   

 

Poisson Probability Distribution 

 

r = number of successes 

 = mean number of successes over given interval    
!

re
P

r
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Chapter 6 

Raw score   x z    

Standard score   
x

z





  

Mean of x distribution   x   

Standard deviation of x distribution   x
n


   

Standard score for x    
/

x
z

n






  

Mean of p̂ distribution   p̂ p   

Standard deviation of p̂ distribution   ˆ ; 1p

pq
q p

n
     

 

Chapter 7 

Confidence Interval 

For  

  x E x E     

  where cE z
n


 when  is known 

       c

s
E t

n
 when  is unknown 

        with d.f. 1n   

 

For p (np > 5 and n(1  p) > 5) 

  ˆ ˆp E p p E     

  where 
ˆ ˆ(1 )

c

p p
E z

n


  

        ˆ
r

p
n

  

 

For 1 2  (independent samples) 

  1 2 1 2 1 2( ) ( )x x E x x E         

  where 

2 2

1 2

1 2

cE z
n n

 
  when 1 and 2 are known 
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2 2

1 2

1 2

c

s s
E t

n n
  when 1 or 2 is unknown 

            with d.f.  smaller of 1 1n  and 2 1n   

          

(Note: Software uses Satterthwaite’s approximation for degrees of freedom d.f.) 

 

For difference of proportions 1 2p p  

  1 2 1 2 1 2
ˆ ˆ ˆ ˆ( ) ( )p p E p p p p E        

  where 
1 1 2 2

1 2

ˆ ˆ ˆ ˆ
c

p q p q
E z

n n
   

       1 1 1 2 2 2 1 1 2 2
ˆ ˆ ˆ ˆ ˆ ˆ/ ;  / ;  1 ;  1p r n p r n q p q p       

 

Sample Size for Estimating 

Means 

2
cz

n
E

 
  
 

 

Proportions    
2

2

1  with preliminary estimate for  

1
            without preliminary estimate for  

4

c

c

z
n p p p

E

z
n p

E

 
   

 

 
  

 

 

 

Chapter 8 

Sample Test Statistics for Tests of Hypotheses 

For   known
/

x
z

n


 




  

For   unknown ;  . . 1
/

x
t d f n

s n


 


    

For p 
ˆ

ˆ( 5 and 5)       , where 1 ;  /
/

p p
np nq z q p p r n

pq n


        

For paired differences d    ; . . 1
/

d

d

d
t d f n

s n


    

Difference of means ( 1 and 2  known)   1 2

2 2
1 2

1 2

x x
z

n n
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Difference of means ( 1 and 2  unknown)   1 2
1 2

2 2
1 2

1 2

;  . .  smaller of  1 and 1
x x

z d f n n
s s

n n


   



 

(Note: Software uses Satterthwaite's approximation for degrees of freedom d.f.)  

 

Difference of proportions   1 2 1 2
1 1 1 2 2 2

1 2

1 2

ˆ ˆ
ˆ ˆ, where  and 1 ;  / ; /

p p r r
z p q p p r n p r n

n npq pq

n n

 
     




 

 

Chapter 9 

 
Regression and Correlation 

Pearson product moment correlation coefficient: 
2 2 2 2

( )( )

( ) ( )

n xy x y
r

n x x n y y

   


     

 

Least-squares line 
2 2

( )( )
ˆ ,  where and  

( )

n xy x y
y a bx b a y bx

n x x

   
    

  
 

Coefficient of determination 2r  

Sample test statistic for r   
2

2
with . . 2

1

r n
t d f n

r


  



 

Standard error of estimate   
2

 
2

e
y a y b xy

S
n

    



 

Confidence interval for y   ˆ ˆy E y y E    , where
 

2

2 2

1
1  with  . . 2

( )
c e

x x
E t S d f n

n n x x


    

  
 

Sample test statistic for slope b   2 21
( ) with . . 2

e

b
t x x d f n

S n
       

Confidence interval for    

2 2

,  where with . . 2
1

( )

c et S
b E b E E d f n

x x
n

      

  

 

Chapter 10 

    
2

2 row total column total
 where 

sample size

O E
E

E



    

Tests of independence     . . 1 1d f R C    

Tests of homogeneity    . ( 1)( 1)d f R C    

Goodness of fit    . . number of entries 1d f    

Confidence interval for 
   2 2

2 2

2 2

1 1
; . . 1

U L

n s n s
d f n 

 

 
     

Sample test statistic for 
  2

2 2

2

1
       with . . 1

n s
d f n 
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Testing Two Variances 

Sample test statistic   
2
1 2 2

1 2 1 22
2

, where ; . . 1; . . 1N D

s
F s s d f n d f n

s
       

ANOVA 

k = number of groups; N = total sample size 

    

       TOT TOT
TOT TOT BET

BET
TOT BET BET BET

BET

BET

2 22 2
2 2

all groups all groups

; ;

;  where . . 1;  where . . ;
. . . .

 where . .  nu

W
W W W

W

W

i i
W i

i i

x xx x
SS x SS SS x

n nN N

SSSS
SS SS SS MS d f k MS d f N k

d f d f

MS
F d f

MS

     
          
   
   

       



 

BETmerator . . 1;  . .  denominator . .Wd f k d f d f N k     

 

Two-Way ANOVA 

r = number of rows; c = number of columns    

Row factor F: 
 row factor

;
 error

MS

MS
 column factor F: 

 column factor
;

 error

MS

MS
 interaction F: 

 interaction

 error

MS

MS
 

with degrees of freedom for  

Row factor = r  1; interaction = (r  1)(c  1); column factor = c  1; error = rc(n  1) 

 

Chapter 11 

Sample test statistic for x = proportion of plus signs to all signs (n  12)   
0.5

0.25 /

x
z

n


  

Sample test statistic for R = sum of ranks 

   1 1 2 1 2 1 21 1
, where  and 

2 12

R
R R

R

n n n n n n nR
z


 



   
    

Spearman rank correlation coefficient   

 

2

2

6
1 , where 

1
s

d
r d x y

n n


   


 

Sample test statistic for runs test     number of runs in sequenceR   
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Transparency Masters  

 
TABLE A   Areas of a Standard Normal Distribution (Alternate Version of Appendix II Table 5)                   

 

  

The table entries represent the area under the standard normal curve from 0 to the specified value of z. 

z .00 .01 .02 .03 .04 .05 .06 .07 .08 .09 

0.0 .0000 .0040 .0080 .0120 .0160 .0199 .0239 .0279 .0319 .0359 

0.1 .0398 .0438 .0478 .0517 .0557 .0596 .0636 .0675 .0714 .0753 

0.2 .0793 .0832 .0871 .0910 .0948 .0987 .1026 .1064 .1103 .1141 

0.3 .1179 .1217 .1255 .1293 .1331 .1368 .1406 .1443 .1480 .1517 

0.4 .1554 .1591 .1628 .1664 .1700 .1736 .1772 .1808 .1844 .1879 

0.5 .1915 .1950 .1985 .2019 .2054 .2088 .2123 .2157 .2190 .2224 

0.6 .2257 .2291 .2324 .2357 .2389 .2422 .2454 .2486 .2517 .2549 

0.7 .2580 .2611 .2642 .2673 .2704 .2734 .2764 .2794 .2823 .2852 

0.8 .2881 .2910 .2939 .2967 .2995 .3023 .3051 .3078 .3106 .3133 

0.9 .3159 .3186 .3212 .3238 .3264 .3289 .3315 .3340 .3365 .3389 

1.0 .3413 .3438 .3461 .3485 .3508 .3531 .3554 .3577 .3599 .3621 

1.1 .3643 .3665 .3686 .3708 .3729 .3749 .3770 .3790 .3810 .3830 

1.2 .3849 .3869 .3888 .3907 .3925 .3944 .3962 .3980 .3997 .4015 

1.3 .4032 .4049 .4066 .4082 .4099 .4115 .4131 .4147 .4162 .4177 

1.4 .4192 .4207 .4222 .4236 .4251 .4265 .4279 .4292 .4306 .4319 

1.5 .4332 .4345 .4357 .4370 .4382 .4394 .4406 .4418 .4429 .4441 

1.6 .4452 .4463  .4474 .4484 .4495 .4505 .4515 .4525 .4535 .4545 

1.7 .4554 .4564 .4573 .4582 .4591 .4599 .4608 .4616 .4625 .4633 

1.8 .4641 .4649 .4656 .4664 .4671 .4678 .4686 .4693 .4699 .4706 

1.9 .4713 .4719 .4726 .4732 .4738 .4744 .4750 .4756 .4761 .4767 

2.0 .4772 .4778 .4783 .4788 .4793 .4798 .4803 .4808 .4812 .4817 

2.1 .4821 .4826 .4830 .4834 .4838 .4842 .4846 .4850 .4854 .4857 

2.2 .4861 .4864 .4868 .4871 .4875 .4878 .4881 .4884 .4887 .4890 

2.3 .4893 .4896 .4898 .4901 .4904 .4906 .4909 .4911 .4913 .4916 

2.4 .4918 .4920 .4922 .4925 .4927 .4929 .4931 .4932 .4934 .4936 

2.5 .4938 .4940 .4941 .4943 .4945 .4946 .4948 .4949 .4951 .4952 

2.6 .4953 .4955 .4956 .4957 .4959 .4960 .4961 .4962 .4963 .4964 

2.7 .4965 .4966 .4967 .4968 .4969 .4970 .4971 .4972 .4973 .4974 

2.8 .4974 .4975 .4976 .4977 .4977 .4978 .4979 .4979 .4980 .4981 

2.9 .4981 .4982 .4982 .4983 .4984 .4984 .4985 .4985 .4986 .4986 

3.0 .4987 .4987 .4987 .4988 .4988 .4989 .4989 .4989 .4990 .4990 

3.1 .4990 .4991 .4991 .4991 .4992 .4992 .4992 .4992 .4993 .4993 

3.2 .4993 .4993 .4994 .4994 .4994 .4994 .4994 .4995 .4995 .4995 

3.3 .4995 .4995 .4995 .4996 .4996 .4996 .4996 .4996 .4996 .4997 

3.4 .4997 .4997 .4997 .4997 .4997 .4997 .4997 .4997 .4997 .4998 

3.5 .4998 .4998 .4998 .4998 .4998 .4998 .4998 .4998 .4998 .4998 

3.6 .4998 .4998 .4998 .4999 .4999 .4999 .4999 .4999 .4999 .4999 

For values of z greater than or equal to 3.70, use 0.4999 to approximate the shaded area under the standard normal curve. 




